首页> 外文OA文献 >Evolution of Carbon Nanofiber-Supported Pt Nanoparticles of Different Particle Sizes: A Molecular Dynamics Study
【2h】

Evolution of Carbon Nanofiber-Supported Pt Nanoparticles of Different Particle Sizes: A Molecular Dynamics Study

机译:碳纳米纤维负载的不同粒径pt纳米粒子的演化:分子动力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Molecular dynamics simulations employing the ReaxFF reactive force field have been carried out to analyze the structural evolution of fishbone-type carbon nanofiber-supported Pt nanoparticles, with particle size ranging from 5.6 to 30.7 Å. Simulated results indicate that upon adsorption the distribution of first-shell Pt–Pt coordination number and radial distribution function change significantly in Pt nanoparticles up to 2 nm in size and that the restructuring degree of the Pt nanoparticles decreases with particle size, which is attributed both to the reduced binding energy per Pt atom bonded to support and to the increased cohesive energy of the Pt nanoparticles. In the Pt10 particle, the majority of the Pt atoms are detached from the metal particle, leading to atomic adsorption of single Pt atoms on the support. As the Pt particle size is increased to ∼3 nm, however, the crystalline degree of Pt nanoparticles is even higher than that of the corresponding isolated nanoparticles because the strong metal–support interaction has a positive effect on the crystalline degree of the upper part of Pt nanoparticles. Two surface properties of the Pt nanoparticles, namely, Pt dispersion and coordination number of surface Pt atoms, are then computed and found to decrease and increase, respectively, with particle size. Thus, on-purpose control of particle size (and hence the metal–metal and metal–support interactions) is of crucial importance for tuning the superficial structures of supported active metal particles, which eventually determine the adsorption and catalytic properties of catalysts.
机译:已经进行了利用ReaxFF反作用力场的分子动力学模拟,以分析鱼骨型碳纳米纤维负载的Pt纳米颗粒的结构演化,其粒径范围为5.6至30.7Å。模拟结果表明,吸附后,最大尺寸为2 nm的Pt纳米颗粒的第一壳Pt–Pt配位数和径向分布函数发生明显变化,并且Pt纳米颗粒的重构度随颗粒大小而降低,这是由于降低了每个与载体结合的Pt原子的结合能,并提高了Pt纳米粒子的内聚能。在Pt10颗粒中,大多数Pt原子从金属颗粒上脱离,导致单个Pt原子在载体上的原子吸附。但是,随着Pt颗粒尺寸增加到约3 nm,Pt纳米颗粒的结晶度甚至比相应的分离纳米颗粒还要高,因为强的金属-载体相互作用对Pt上部的结晶度有积极影响。铂纳米粒子。然后计算出Pt纳米粒子的两个表面特性,即Pt分散度和表面Pt原子的配位数,发现它们随粒径的增加而减少和增加。因此,有目的地控制粒度(以及金属与金属以及金属与载体之间的相互作用)对于调节负载型活性金属颗粒的表面结构至关重要,最终决定了催化剂的吸附和催化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号